The 7 Rocky Earth-Size TRAPPIST-1 Planets Have Remarkably Similar Densities

3 Years, 9 Months, 1 Day, 1 Hour  ago

The 7 Rocky Earth-Size TRAPPIST-1 Planets Have Remarkably Similar Densities

Precise measurements reveal that the exoplanets have remarkably similar densities, which provides clues about their composition.
The red dwarf star PIST-1 is home to the largest group of roughly Earth-size planets ever found in a single stellar system. Located about 40 light-years away, these seven rocky siblings provide an example of the tremendous variety of planetary systems that likely fill the universe.
A new study published on January 22, 2021, in the Planetary Science Journal shows that the TRAPPIST-1 planets have remarkably similar densities. That could mean they all contain about the same ratio of materials thought to compose most rocky planets, like iron, oxygen, magnesium, and silicon. But if this is the case, that ratio must be notably different than Earth’s: The TRAPPIST-1 planets are about 8% less dense than they would be if they had the same makeup as our home planet. Based on that conclusion, the paper authors hypothesized a few different mixtures of ingredients could give the TRAPPIST-1 planets the measured density.
Some of these planets have been known since 2016, when scientists announced that they’d found three planets around the TRAPPIST-1 star using the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile. Subsequent observations by NASA’s now-retired Spitzer Space Telescope, in collaboration with ground-based telescopes, confirmed two of the original planets and discovered five more. Managed by NASA’s Jet Propulsion Laboratory in Southern California, Spitzer observed the system for over 1,000 hours before being decommissioned in January 2020. NASA’s Hubble and now-retired Kepler space telescopes have also studied the system.
All seven TRAPPIST-1 planets, which are so close to their star that they would fit within the orbit of Mercury, were found via the transit method: Scientists can’t see the planets directly (they’re too small and faint relative to the star), so they look for dips in the star’s brightness created when the planets cross in front of it.
Repeated observations of the starlight dips combined with measurements of the timing of the planets’ orbits enabled astronomers to estimate the planets’ masses and diameters, which were in turn used to calculate their densities. Previous calculations determined that the planets are roughly the size and mass of Earth and thus must also be rocky, or terrestrial – as opposed to gas-dominated, like Jupiter and Saturn. The new paper offers the most precise density measurements yet for any group of exoplanets – planets beyond our solar system.

Loading